China high quality 780 M3/H Dvp-800 Variable Pitch Pharmaceutical/Petrochemical Industry Dry Screw Vacuum Pump vacuum pump diy

Product Description

 

Working principle

The vacuum in dry screw pumps is created through 2 parallel-arranged screw rotors that rotate in opposite directions. These rotors trap the gas coming in through the inlet and deliver it to the gas discharge or pressure side. As the gas is getting compressed, there is no contact between the rotors. This does away with any need for the compression chamber to have any operating fluids or lubrication.
 The lubricant used to lubricate the gears and shaft seal is sealed in the gearbox by the shaft seal. The pump can be cooled either directly by circulating cooling water or by a cooling unit with fan and radiator.
The dry screw vacuum pump adopts a special rotor pitch design, compared with the ordinary rotor pitch design, reduce the energy consumption by about 30%, the temperature rise of the exhaust end is reduced by about 100 ºC, the reliability and stability of the operation of the product is greatly improved, can be suitable for any working conditions of vacuum.
The dry screw pumps can be widely used in solvent recovery, vacuum drying, concentration, crystallization, distillation and other processes in the chemical and pharmaceutical industries, vacuum extrusion and molding in the plastic and rubber industries, vacuum degassing in the metallurgical industry; vacuum degassing and drying in the solar energy, microelectronics, lithium battery and other industries.

Pump body and end caps:  high-strength cast iron.
Pump body and end caps:  high strength cast iron.
Screw rotor:                        ductile cast iron.
Anti-corrosion coating:        corrosion-resistant Hastelloy.
Synchronous gears:            alloy steel.
Radial lip seal:                     imported PTFE mixture or
                                            high-temperature resistant fluorine rubber;
Seal bushings:                    stainless steel surface covered with ceramic.

Flow chart

 

Main features

1. The screw rotor is designed with variable pitch structure, the ultimate vacuum can reach below 1Pa, which can meet all kinds of vacuum processing from atmosphere to high vacuum.
2. Oil free – Adapt to various special working conditions for reliable use.
3. It can operate reliably in the pressure range from atmosphere to several Pa.
4. No friction between moving parts, simple structure, lower operation and maintenance cost.
5. Nitrogen seal and composite seal design is optional, which has the benefit of good reliability, low cost of use, simple maintenance.
6. The rotor is dynamically balanced at high speed and the motor is connected by flange, with high concentricity, low vibration and low noise.
7. Hastelloy anti-corrosion coating is optional for rotor surface, condensable material is not easy to condense in the pump cavity, better corrosion resistance.
8. Compared with oil seal pump, liquid ring pump, there is no waste gas, no waste liquid, no waste oil emission, energy saving and environmental friendly.
It can be used alone or with Roots vacuum pump, air-cooled Roots vacuum pump, molecular vacuum pump, etc. to obtain an oil-free high vacuum system.

The benefit of dry screw vacuum pump compared to liquid ring vacuum pump:

    -Shorten the process cycle and improve production efficiency
    -Reduce water consumption
    -Save energy
    -Improve product quality
    -Can recover solvent by reducing the drying time of products
    -Reduce the cost of wastewater and waste gas treatment

A CASE in a pharmaceutical factory
Process introduction:The penicillin sodium salt solution is fed into the crystallization tank through vacuum. By steam heating, agitator stirring, and adding butanol, the water and butanol in the penicillin solution are pumped into the condenser and condensed into the liquid collecting tank, which can be reused.

Process requirements:
1. The volume of crystallization tank is 7.5m3, and about 4.5m3 penicillin solution is added in the process.
2. Before entering the crystallization tank, the water content of penicillin solution is about 20%, and after crystallization, the water content is required to be about 1%.
3. Vacuum feeding for 2h, then adding butanol for 30min, and then starting to crystallize. The process requires low temperature and fast speed, and the lower the temperature, the better the quality of penicillin. The shorter the reaction time, the better.
4. Vacuum degree requirements: the vacuum degree shall be kept above -0.097MPa. High vacuum degree can reduce the reaction temperature and shorten the reaction time.

The previous vacuum system was 2BE1252+air ejector, which is now transformed into a dry screw vacuum pump. The comparison table of test data is as follows:

vacuum system 2BE1252+ejector DVP 1600 screw pump
Feeding time (h) 2 1.5
Liquid temperature at the beginning of crystallization (ºC) 31.5 16.6
Crystallization time (h) 6 4.5
Time from crystallization to liquid coming out (min) 30 15
Crystal quality average good
Power consumption (KW) 45 37
Water consumption (m3) 26.4 0.72

Economic benefit analysis:

  Cost saving(USD) Remark
Water consumption and treatment 130 Water cost: $0.65/m3, water treatment: 30/m3
Power 15 $0.15/Kwh
Labor, production efficiency 43 Reduced from 6 hour to 4.5 hour
Sum up 188  

Please contact us for a detailed report of economic benefit analysis for your applications! 

 

Configuration
Standard configuration:
Machine base, pump head, coupling, motor, driving screen, air inlet connector, check valve, vacuum gauge, manual filling valve exhaust port muffler.
Optional accessories:
Inlet filter, inlet condenser, solvent flushing device, nitrogen purging device, nitrogen sealing device, exhaust port condenser, solenoid filling valve, cooling water flow switch, temperature sensor, pressure transmitter.

Applications

Leak Detection    Metallurgy  Industrial furnace  Lithium Battery
Chemical, pharmaceutical  Wind tunnel test  Power Industry Vacuum coating
Microelectronics industry Drying Process  Packaging and Printing Solar Energy
Exhaust gas recovery       

Product Parameters

Technical data of Variable pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DVP-180 181 2 4 2900 82 8 50 40 280
DVP-360 354 2 7.5 2900 83 10 50 40 400
DVP-540 535 2 11 2900 83 10 50 40 500
DVP-650 645 1 15 2900 84 20 65 50 600
DVP-800 780 1 22 2900 86 30 100 80 800
DVP-1600 1450 1 37 2900 86 40 125 100 1200

Technical data of Constant pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DSP-140 143 5 4 2900 82 10 50 40 240
DSP-280 278 5 7.5 2900 83 20 50 40 350
DSP-540 521 5 15 2900 83 30 65 50 550
DSP-650 617 5 18.5 2900 84 45 65 50 630
DSP-720 763 5 22 2900 85 55 80 80 780
DSP-1000 912 5 30 2900 86 70 100 80 880

Note: The cooling water volume of the dry screw vacuum pump provided in the table is the amount under 20ºC room temperature water. When the dry screw vacuum pump uses cooling device, the cooling water will be increased, the difference of inlet and outlet water temperature is generally controlled below 7ºC is appropriate.

 

Dimension

 

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

After-sales Service: Online Video Instruction
Warranty: 1 Year
Suction Connection Size: 100 mm
Cooling Water Required: 30 L/Min
Weight (Without Motor) Approx.: 800 Kg
Pitch Type: Third Generation Variable Pitch

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Packaging?

Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

When using vacuum pumps for vacuum packaging, the following steps are typically involved:

1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

What Is the Purpose of a Vacuum Pump in an HVAC System?

In an HVAC (Heating, Ventilation, and Air Conditioning) system, a vacuum pump serves a crucial purpose. Here’s a detailed explanation:

The purpose of a vacuum pump in an HVAC system is to remove air and moisture from the refrigerant lines and the system itself. HVAC systems, particularly those that rely on refrigeration, operate under specific pressure and temperature conditions to facilitate the transfer of heat. To ensure optimal performance and efficiency, it is essential to evacuate any non-condensable gases, air, and moisture from the system.

Here are the key reasons why a vacuum pump is used in an HVAC system:

1. Removing Moisture: Moisture can be present within an HVAC system due to various factors, such as system installation, leaks, or improper maintenance. When moisture combines with the refrigerant, it can cause issues like ice formation, reduced system efficiency, and potential damage to system components. A vacuum pump helps remove moisture by creating a low-pressure environment, which causes the moisture to boil and turn into vapor, effectively evacuating it from the system.

2. Eliminating Air and Non-Condensable Gases: Air and non-condensable gases, such as nitrogen or oxygen, can enter an HVAC system during installation, repair, or through leaks. These gases can hinder the refrigeration process, affect heat transfer, and decrease system performance. By using a vacuum pump, technicians can evacuate the air and non-condensable gases, ensuring that the system operates with the designed refrigerant and pressure levels.

3. Preparing for Refrigerant Charging: Prior to charging the HVAC system with refrigerant, it is crucial to create a vacuum to remove any contaminants and ensure the system is clean and ready for optimal refrigerant circulation. By evacuating the system with a vacuum pump, technicians ensure that the refrigerant enters a clean and controlled environment, reducing the risk of system malfunctions and improving overall efficiency.

4. Leak Detection: Vacuum pumps are also used in HVAC systems for leak detection purposes. After evacuating the system, technicians can monitor the pressure to check if it holds steady. A significant drop in pressure indicates the presence of leaks, enabling technicians to identify and repair them before charging the system with refrigerant.

In summary, a vacuum pump plays a vital role in an HVAC system by removing moisture, eliminating air and non-condensable gases, preparing the system for refrigerant charging, and aiding in leak detection. These functions help ensure optimal system performance, energy efficiency, and longevity, while also reducing the risk of system malfunctions and damage.

China high quality 780 M3/H Dvp-800 Variable Pitch Pharmaceutical/Petrochemical Industry Dry Screw Vacuum Pump   vacuum pump diyChina high quality 780 M3/H Dvp-800 Variable Pitch Pharmaceutical/Petrochemical Industry Dry Screw Vacuum Pump   vacuum pump diy
editor by CX 2023-09-28