China Best Sales Polycold Chiller Pfc-672hc Water Vapor Pump vacuum pump design

Product Description

XIEYI -135ºC Water Vapor Capture Pump

Ultra-low energy consumption
Cold trap cooled to -135ºC
Maximum load 550-6 liters per second
Refrigeration capacity more than other models machines with the same displacement compressor
Cold trap can reach the ideal extraction speed within 3 minutes
Environmental protection, with no flammable gas

What is a cryopump?

XIEYI Water vapor capture cryo chiller (cryogenic machine), using the principle of low-temperature adsorption and capture, can effectively condense and collect 95% of the residual water vapor on the surface of the cold trap in the vacuum chamber, so that the system can quickly obtain the required vacuum degree.
They can be used in a variety of applications to improve product quality and processing speed by enabling more production in a day. Industries include thin film, semiconductor, automotive, medical, ophthalmology, food and beverage, aerospace, and defense. Application examples include automotive headlights, food packaging, and the production of jet engines.

Cold trap coil
The cold trap coil is the key direct part of trapping water vapor. It is installed in a vacuum chamber and absorbs water vapor on the surface of the pipe through the ultra-low temperature of the coil surface. Any shape of the coil can be customized according to your requirements.
The cold traps and connecting pipes of our company are all made of domestic top-quality ZheJiang Flywheel cold extruded copper tubes, welded by American Harris 56% silver brazing rods.

Cold bridge
The cold and heat bridge is mainly an isolation vacuum and heat insulation device for the cryogenic pipeline to enter the vacuum chamber. The connection of the pipeline adopts CHINAMFG CPI or Swagelok VCR connectors, and there are 2 specifications of the cold and heat bridge, 1 inch and 2 inches.
The opening diameter of the 1-inch cavity needs to be 27mm, and the opening diameter of the 2-inch cavity is 52mm. The cold and heat bridge can be customized according to the hole diameter you design.

Refrigeration connecting pipe
The length of the standard connecting pipeline is 2.44 meters, the outer diameter of the insulation pipe is 92mm, and the nylon protective braided pipe is coated to prevent damage to the insulation pipe. The 2 ends of the connecting pipe are connected to the cold trap and the trapping pump with CPI or VCR joints. It is optional to install T-type thermocouple sensors for measuring the inlet and outlet of the cold trap.

Technical Parameter

Model WVCP2600-S-H WVCP2600-D-H
Maximum cooling capacity(W) 2600 2600
The theory maximum pumping speed of tubular cold trap(L/S) 220500 220500
The theory maximum speed of plate cold trap(L/S) 294000 294000
Final vacuum(mbar) 2*10-8 2*10-8
Defrost time of maximum cold trap area(min) <3 <3
Adjustable range of defrost temperature(ºC) -20~30 -20~30
Pressure control mode Digital sensor+Mechanical switch Digital sensor+Mechanical switch
Quick restore balance pressure function(QRBP) Yes Yes
Oil blocking proof function(OBP) Yes Yes
4G Remote control Yes Yes
Cold media properties Pro-environment Pro-environment
Maximum surface area of tubular cold trap(m²) 1.5 1.5
Maximum surface area of plate cold trap(m²) 2 2
Specification of single cold trap(m²) φ16mm*30m /
Specification of double cold trap(m²) / 2*φ16mm*15m
Gas interface 12.7 copper welded junction(Standard) 12.7 copper welded junction(Standard)
ParkerCPI/VCR(Optional) ParkerCPI/VCR(Optional)
Cooling water flow(L/Min at 24ºC) 20 20
Cooling water alarm temperature(ºC) 38 38
Cooling tower Yes Yes
Cooling water connector(L/S) G3/4 G3/4
Maximum load power(kW) 12.8 12.8
Compressor nominal power(HP) 7.5 7.5
Power supply(50HZ) 380-400V AC 3P(H) 380-400V AC 3P(H)
200-230V AC 3P(L) 200-230V AC 3P(L)
Dimension(MM) 935(L)*873(D)*1809(H) 935(L)*873(D)*1809(H)
Weight(KG) 460 460

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online&on The Field
Warranty: 24 Months
Oil or Not: Oil
Structure: -150 ºC Deep Colding
Exhauster Method: Within System
Vacuum Degree: High Vacuum


vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Best Sales Polycold Chiller Pfc-672hc Water Vapor Pump   vacuum pump design		China Best Sales Polycold Chiller Pfc-672hc Water Vapor Pump   vacuum pump design
editor by CX 2024-03-07