China factory 30-Spen Industrial Heavy Duty Hydraulic Water Ring Screw Vacuum Pump vacuum pump design

Product Description

,

Product Description

The sealing oil vacuum pump is mainly used in the sealing oil system of steam turbines and generators, with the ability to efficiently handle condensate steam and gas loads. The main function of a vacuum pump in a sealing oil system is to extract gas and air from the system to maintain the vacuum inside the system and ensure the flow and sealing performance of lubricating oil.
 
The generator sealed oil vacuum pump has high performance and reliability, and is suitable for various working conditions. It adopts advanced sealing technology to ensure the lowest leakage rate of sealing oil. In addition, its compact design and efficient performance make this vacuum pump an ideal choice for power plants.

 

 Product Features of Vacuum Pump 

  • Safe and reliable: The pump has fully considered safety during the design process, ensuring that there will be no malfunctions under normal usage conditions.
  • Low noise: The pump has low noise during operation, which is beneficial for reducing production environment noise and improving production comfort.
  • Stable quality: The pump is made of high-quality materials, ensuring that the pump body, rotor and other components have a long service life.
  • Widely used: Pumps are suitable for various industries, such as chemical, pharmaceutical, food, semiconductor, and other fields.
  • Easy to match: The pump has a variety of sizes and can be easily used with other vacuum equipment, compressed air equipment, etc.
  • Energy conservation and environmental protection: The pump has a compact structure, high efficiency, and low energy consumption, which is beneficial for energy conservation and reducing environmental pollution.
  • Long term operation: Under reasonable usage conditions, the pump can achieve long-term stable operation and meet continuous production needs.

 

 

 Application of Vacuum Pump 
1. Vacuum distillation, vacuum drying, vacuum concentration, and other processes in the chemical industry.
2. Operations such as vacuum drying and evaporation concentration in the pharmaceutical industry.
3. Applications such as vacuum packaging, vacuum filling, vacuum drying, and vacuum freezing in the food industry.
4. Electronic device manufacturing and packaging process.
5. The fields of semiconductors and solar cells.

 

Detailed Photos

 

Related Products

Find more spare parts for generator sealing oil pumps:

MECHANICAL SEAL-N.D.E L270/102 vacuum pump oil filter cap P-1259
MECHANICAL SEAL-DE L270/116 vacuum pump sealing gasket P-1264
mechanical seal L270/91 vacuum pump filter P-1278
MECHANICAL SEAL N.D.E L270 vacuum pump Valve bolt P-1433
vacuum pump filter spring P-2037 vacuum pump valve box P-1758
vacuum pump sealing P-2332 vacuum pump mechanical seal P-2811
vacuum pump bearing P-2335 vacuum pump valve plate P-537
vacuum pump vacuum pump seperator P-2402 vacuum pump valve spring P-540

Yoyik offers different types of Hydraulic pumps for industrial users:

best vacuum pump for vacuum bagging P-1825B
oil vacuum pump working principle P-1759
vacuum pump spare parts Gear ring of gear coupling P-1761
vacuum pump for sale P-1803
vacuum pump components Coml
best ac vacuum pump N-625
vacuum pump lock nut 30-WS P-2811
sealing oil Vacuum pump unit P-1825
sealing oil water-ring vacuum pump mechanical seal SW-30
vacuum transfer pump SK-831
vacuum pump vacuum pump seperator 30SPEN
vacuum pump lock nut M-206
vacuum pump filter Z1201126
vacuum pump working principle M-209
vacuum cylinder pump ZS-185
vacuum pump spare parts FLASH BOARD P-1836
vacuum pump working KZ/100WS
 

Packaging & Shipping

          Standard & CHINAMFG packaging ensures your goods safety.

          Various professional packages at your choice

         Multiple choice of reliable and cost-effective shipping methods available.

 

Company Profile

– ABOUT US –

HangZhou Yoyik Engineering Co., Ltd is located in HangZhou, ZheJiang , China’s heavy equipment base, was founded in 2004. The company is a professional power plant spare parts manufacturer and supplier. Our products are applicable for many thermal power plants, hydropower plants, metallurgic industrial power plant, cement plant power house, aluminum plant power house, and coal mill power plants.

From advanced precision electric elements and components to highly-customized metal items, you can find all the needed for a power plant from Yoyik.

Yoyik is the exclusive agent of W.M. Nugent CO Inc for selling Nugent filter elements and filtration system products in China. The company also has great advantages in of many hydraulic products, including pumps, valves, sealing materials, etc. the brands include Eaton, Vickers, Moog, star, copaltite, temp-tite, 707, etc.

 

Our Advantages

 

– TECHNICAL PATENTS –

 

– OUR ADVANTAGE –

– COOPERATIVE INDUSTRIES –

Yoyik offers wide range of spare parts for customers in different industries:
 

FAQ

– ORDER NOTES –

√ Model Selection
Before purchasing, please ensure that the model specifications you provide are complete or that the drawings have been drawn so that you can provide timely and accurate quotations.

√ Quality Assurance
We promise to provide high-quality products and after-sales service. If there are any quality issues, please contact us promptly.

√ Secure Transactions
We sell on MIC, provide a secure and reliable trading environment, and accept multiple payment methods to facilitate your purchase.

 

– FAQ –

– Are you trading company or manufacturer?
We are factory located in HangZhou, China.

– How long is your delivery time?
Generally it is 2-5 days if the goods are in stock. Or it is 7-21 days if the goods are not in stock, it is according to quantity.

– Do you provide samples? Is it free or extra?
Sorry we do not offer samples.

– What price terms do you accept?
Our company can accept all trading manners, eg. EXW, FOB, CIF etc

– What payment terms do you accept?
We accept T/T.

After-sales Service: Online Support
Warranty: 6 Months
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

How Do You Choose the Right Size Vacuum Pump for a Specific Application?

Choosing the right size vacuum pump for a specific application involves considering several factors to ensure optimal performance and efficiency. Here’s a detailed explanation:

1. Required Vacuum Level: The first consideration is the desired vacuum level for your application. Different applications have varying vacuum level requirements, ranging from low vacuum to high vacuum or even ultra-high vacuum. Determine the specific vacuum level needed, such as microns of mercury (mmHg) or pascals (Pa), and choose a vacuum pump capable of achieving and maintaining that level.

2. Pumping Speed: The pumping speed, also known as the displacement or flow rate, is the volume of gas a vacuum pump can remove from a system per unit of time. It is typically expressed in liters per second (L/s) or cubic feet per minute (CFM). Consider the required pumping speed for your application, which depends on factors such as the volume of the system, the gas load, and the desired evacuation time.

3. Gas Load and Composition: The type and composition of the gas or vapor being pumped play a significant role in selecting the right vacuum pump. Different pumps have varying capabilities and compatibilities with specific gases. Some pumps may be suitable for pumping only non-reactive gases, while others can handle corrosive gases or vapors. Consider the gas load and its potential impact on the pump’s performance and materials of construction.

4. Backing Pump Requirements: In some applications, a vacuum pump may require a backing pump to reach and maintain the desired vacuum level. A backing pump provides a rough vacuum, which is then further processed by the primary vacuum pump. Consider whether your application requires a backing pump and ensure compatibility and proper sizing between the primary pump and the backing pump.

5. System Leakage: Evaluate the potential leakage in your system. If your system has significant leakage, you may need a vacuum pump with a higher pumping speed to compensate for the continuous influx of gas. Additionally, consider the impact of leakage on the required vacuum level and the pump’s ability to maintain it.

6. Power Requirements and Operating Cost: Consider the power requirements of the vacuum pump and ensure that your facility can provide the necessary electrical supply. Additionally, assess the operating cost, including energy consumption and maintenance requirements, to choose a pump that aligns with your budget and operational considerations.

7. Size and Space Constraints: Take into account the physical size of the vacuum pump and whether it can fit within the available space in your facility. Consider factors such as pump dimensions, weight, and the need for any additional accessories or support equipment.

8. Manufacturer’s Recommendations and Expert Advice: Consult the manufacturer’s specifications, guidelines, and recommendations for selecting the right pump for your specific application. Additionally, seek expert advice from vacuum pump specialists or engineers who can provide insights based on their experience and knowledge.

By considering these factors and evaluating the specific requirements of your application, you can select the right size vacuum pump that meets the desired vacuum level, pumping speed, gas compatibility, and other essential criteria. Choosing the appropriate vacuum pump ensures efficient operation, optimal performance, and longevity for your application.

China factory 30-Spen Industrial Heavy Duty Hydraulic Water Ring Screw Vacuum Pump   vacuum pump design		China factory 30-Spen Industrial Heavy Duty Hydraulic Water Ring Screw Vacuum Pump   vacuum pump design
editor by CX 2023-11-18