China Custom Electric Blade Sewage Swimming Pool Vacuum Equipment Submersible DC Solar Water Pump Hot with Great quality

Product Description

 

Product Description

Model Voltage(Vdc) Power Max Head Max Flow Outlet Solar Panel Configuration
Rated Range Watt HP Mtrs. m3/h Inch
4SPC7/210-D220/2500 220 150-300 2500 3 210 7 1.25 540W-36V-6PCS
4SPC12/160-D220/2500 220 150-300 2500 3 160 12 2 540W-36V-6PCS
4SPC18/68-D220/2500 220 150-300 2500 3 68 18 2 540W-36V-6PCS
4SPC15/100-D220/2500 220 150-300 2500 3 100 15 2 540W-36V-6PCS

The system is mainly composed of solar modules, solar water pump controller, solar water pump, sprinkler and conveying pipeline.  The sun generates electricity to drive the pump to raise water to meet the water needs of the greenhouses. And can connect to smart agricultural iot systems.
 

High efficiency poly solar cell with positive tolerance on
International quality management system with 100% panel power and EL test before shipment
Fire test, Ammonia corrosion test, Salt mist corrosion resistance approved
Nearest shipment port: HangZhou or ZheJiang
Temperature Coefficients
Power temperature coefficient (%/ºC): – 0.45 %/ºC
Current temperature coefficient(%/ºC): 0.065±0.015 %/ºC
Voltage temperature coefficient(%/ºC): – 0.35 %/ºC
NOCT-Normal Operating Cell Temperature: 45±2ºC

Project Case

Till now, we have supplied solar products to 100+ companies from all over the world. We build the good relationship with our
clients&provide best quality modules.
Asian: India,Japan,Korea,Singapore,Pakistan,Malaysia,Philippines,Israel,Bangladesh…
Europe:Germany,France,Austria,Slovakia,Sweden,Norway,Netherlands, Finland,Serbia. Australia: Australia, New Zealand,Fiji
America: United States,Canada,Colombia,Brazil,Chile…
Africa: Ghana,Kenya,Nigeria,Mauritius,Congo…Till now, we have supplied solar products to 100+ companies from all over the world. We build the good relationship with our
clients&provide best quality modules.

Packaging & Shipping

Certifications

Company Profile

Product Warranty

 

25 – year limited warranty of 80% power output;
10 – year limited warranty of 90% power output;
5 – year limited warranty of materials and workmanship
STC:  lrradiance 1000 W/m2, module temperature 25 °C, AM=1.5;
Best in Class AAA solar simulator (IEC 60904-9) used, power measurement uncertainty is within +/- 3%

Material

Ø  Solar cell——conversion efficency of solar cells: 24%-17%, and  ensures high performance and more      power under same condition  
Ø Front glass——3.2mm, high transmission, low iron, tempered glass,to enhanced stiffness and impact 
resistance
Ø EVA——excellent anti-aging EVA , to enhance the rigidity and stability of solar cells
Ø  TPT——-TPT hot seal made of flame resistance.
Ø  Flame——is equipped with drainage holes in order to eliminate the risk that rain or snow water may accumulate in the frame 
Ø  Junction box——Ip65 rated, high quality, with diode protection
Ø Bypass diodes ——to avoid hot-spot effect.

 

FAQ

 

Q : How can we guarantee quality?
A : Always a pre-production sample before mass production;

Always final Inspection before shipment.

Q : Why should you buy from us not from other suppliers?
A : Intenergy is a global Solar energy provider with a presence in more than130 countries around the world.More than 1.5GW of
Intenergy modules have been used in residential, commercial and off-grid systems around the world.

Q : what services can we provide?

A : Accepted Delivery Terms : FOB ,CFR ,CIF ,EXW.

Accepted Payment Currency : USD ,EUR ,CNY.
Accepted Payment Type : T/T ,L/C ,Credit Card.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Max.Head: >150m
Max.Capacity: <50 L/min
Driving Type: Motor
Material: Stainless Steel
Structure: Gear Pump
Assembly: Liquid Pumps
Samples:
US$ 210/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

Can Vacuum Pumps Be Used in the Production of Solar Panels?

Yes, vacuum pumps are extensively used in the production of solar panels. Here’s a detailed explanation:

Solar panels, also known as photovoltaic (PV) panels, are devices that convert sunlight into electricity. The manufacturing process of solar panels involves several critical steps, many of which require the use of vacuum pumps. Vacuum technology plays a crucial role in ensuring the efficiency, reliability, and quality of solar panel production. Here are some key areas where vacuum pumps are utilized:

1. Silicon Ingot Production: The first step in solar panel manufacturing is the production of silicon ingots. These ingots are cylindrical blocks of pure crystalline silicon that serve as the raw material for solar cells. Vacuum pumps are used in the Czochralski process, which involves melting polycrystalline silicon in a quartz crucible and then slowly pulling a single crystal ingot from the molten silicon. Vacuum pumps create a controlled environment by removing impurities and preventing contamination during the crystal growth process.

2. Wafering: After the silicon ingots are produced, they undergo wafering, where the ingots are sliced into thin wafers. Vacuum pumps are used in wire saws to create a low-pressure environment that helps to cool and lubricate the cutting wire. The vacuum also assists in removing the silicon debris generated during the slicing process, ensuring clean and precise cuts.

3. Solar Cell Production: Vacuum pumps play a significant role in various stages of solar cell production. Solar cells are the individual units within a solar panel that convert sunlight into electricity. Vacuum pumps are used in the following processes:

– Diffusion: In the diffusion process, dopants such as phosphorus or boron are introduced into the silicon wafer to create the desired electrical properties. Vacuum pumps are utilized in the diffusion furnace to create a controlled atmosphere for the diffusion process and remove any impurities or gases that may affect the quality of the solar cell.

– Deposition: Thin films of materials such as anti-reflective coatings, passivation layers, and electrode materials are deposited onto the silicon wafer. Vacuum pumps are used in various deposition techniques like physical vapor deposition (PVD) or chemical vapor deposition (CVD) to create the necessary vacuum conditions for precise and uniform film deposition.

– Etching: Etching processes are employed to create the desired surface textures on the solar cell, which enhance light trapping and improve efficiency. Vacuum pumps are used in plasma etching or wet etching techniques to remove unwanted material or create specific surface structures on the solar cell.

4. Encapsulation: After the solar cells are produced, they are encapsulated to protect them from environmental factors such as moisture and mechanical stress. Vacuum pumps are used in the encapsulation process to create a vacuum environment, ensuring the removal of air and moisture from the encapsulation materials. This helps to achieve proper bonding and prevents the formation of bubbles or voids, which could degrade the performance and longevity of the solar panel.

5. Testing and Quality Control: Vacuum pumps are also utilized in testing and quality control processes during solar panel production. For example, vacuum systems can be used for leak testing to ensure the integrity of the encapsulation and to detect any potential defects or leaks in the panel assembly. Vacuum-based measurement techniques may also be employed for assessing the electrical characteristics and efficiency of the solar cells or panels.

In summary, vacuum pumps are integral to the production of solar panels. They are used in various stages of the manufacturing process, including silicon ingot production, wafering, solar cell production (diffusion, deposition, and etching), encapsulation, and testing. Vacuum technology enables precise control, contamination prevention, and efficient processing, contributing to the production of high-quality and reliable solar panels.vacuum pump

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China Custom Electric Blade Sewage Swimming Pool Vacuum Equipment Submersible DC Solar Water Pump Hot   with Great quality China Custom Electric Blade Sewage Swimming Pool Vacuum Equipment Submersible DC Solar Water Pump Hot   with Great quality
editor by CX 2023-12-27