Product Description
Product Presentation
Hylein series oil-free screw vacuum pump is an advanced dry vacuum pump independently developed by our company. Because the screw vacuum pump does not need oil lubrication or water seal, the pump chamber is completely oil-free, so compared with the traditional water ring vacuum pump, rotary vane vacuum pump, slide valve vacuum pump, reciprocating vacuum pump and water jet vacuum pump has incomparable advantages, both energy saving and emission reduction, and low carbon environmental protection, is a new trend in the development of vacuum industry. Suitable for packaging, paper, CNC, plastic, glass, leather, foam, printing and dyeing, PVC pipe, bottle making, wood processing and meat packaging and other applications.
Technical parameters
Model | Power | Noise Level | Ultimate Pressure | Pumping Speed | Inlet Size | Outlet Size | External Size |
KW | dB(A) | Kpa | m3/h | (L*W*H) mm | |||
ZK15 | 15 | 65-75 | -20~-70 | 980 | DN100 | DN100 | 1550*870*1330 |
ZK22 | 22 | 70-80 | 1428 | DN100 | DN100 | 1860*1100*1630 | |
ZK30 | 30 | 75-85 | 1766 | DN150 | DN150 | 1860*1100*1630 |
Performance advantage
. No oil in the pump chamber, no pollution to the vacuum system, improve product quality;
. There is no oil in the pump chamber, to solve the problem of oil emulsification and frequent replacement of working fluid, frequent maintenance and maintenance, and save the use of finished products;
. Dry operation, will not produce waste oil and smoke, will not produce waste water, is conducive to environmental protection, saving oil resources and water;
. The limit vacuum can reach -70Kpa;
. Can remove a large amount of water vapor and a small amount of dust gas;
. After treatment with anti-corrosion coating, it can remove a variety of corrosive media, especially suitable for distillation, drying and degassing of products in chemical and pharmaceutical processes;
. The pumped gas is directly discharged from the pump, and the polluted gas solvent recovery without water and oil is more convenient.
Equipment advantage
Fast installation saves time and space, Hylein series is 1 of the smallest equipment on the market, is the ideal choice for vacuum room installation; All parts are assembled in a neat housing; Plug and play; The pump system can use Elektronikon control (Es6i) to optimize the working environment and run stably with low cost.
The maintenance of Hylein series is convenient, the maintenance frequency is low, no rotating disc, no rotating disc vibration, no rotating disc wear. The average maintenance interval is extremely long. This series of devices also does not require water and oil to use the iot cloud, so you can always understand the operation performance and maintenance needs of the equipment.
In addition, compared to other vacuum pumps on the market, the Hylein series operates with extremely low noise, and with the industry-leading oil recovery capability, the cleanliness of the exhaust gas is excellent, and the cleanliness of the factory floor working environment is greatly improved.
Used in many fields, industries
After-sales Service
Equipment support High efficiency and energy saving equipment since the start of normal commissioning, to ensure the normal operation of the equipment.
Service scheme Monthly, quarterly regular arrangement of personnel to the user phone or on-site equipment operation inspection, testing work, timely understanding of unit operation dynamics, effective answer to user equipment operation questions, and do the corresponding need to improve maintenance, maintenance, to ensure the long-term effective work of the equipment, while providing service reports every time.
Technical service As long as the user needs equipment and technical help and consultation, the company will accurately reply within 2 hours, and provide the relevant technical information.
Service team We have a CHINAMFG theoretical knowledge, practical ability of strong service team and high-quality management team.
Corresponding time Our company will respond within 2 hours after receiving the notification of the failure of the user’s equipment, provide the fastest solution, and arrange technicians to arrive at the scene as soon as necessary.
Warranty commitment High efficiency and energy saving equipment since the start of normal commissioning, the whole machine warranty for 1 year.
FAQ
Q1: What’s your delivery time?
O: It takes about 15 days, if there is any urgent order, please contact us.
Q2: How long is your air compressor warranty?
O: One year for the whole machine when the compressor leave our factory.
Q3: How about your after-sales service?
O:1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 7*24 |
---|---|
Warranty: | 1 Year |
Oil or Not: | Oil Free |
Structure: | Rotary Vacuum Pump |
Exhauster Method: | Positive Displacement Pump |
Vacuum Degree: | Vacuum |
Customization: |
Available
|
|
---|
Can Vacuum Pumps Be Used for Vacuum Furnaces?
Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:
Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.
Here are some key points regarding the use of vacuum pumps in vacuum furnaces:
1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.
2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.
3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.
4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.
5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.
6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.
7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.
8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.
Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.
What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?
Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:
Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:
1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.
2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.
3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.
4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.
5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.
6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.
It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.
In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.
Can Vacuum Pumps Be Used in Laboratories?
Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:
Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:
1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.
2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.
3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.
4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.
5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.
6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).
7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.
Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.
editor by Dream 2024-04-30